Zero-Sum Polymatrix Games: A Generalization of Minmax
نویسندگان
چکیده
منابع مشابه
Zero-Sum Polymatrix Games: A Generalization of Minmax
We show that in zero-sum polymatrix games, a multiplayer generalization of two-person zerosum games, Nash equilibria can be found efficiently with linear programming. We also show that the set of coarse correlated equilibria collapses to the set of Nash equilibria. In contrast, other important properties of two-person zero-sum games are not preserved: Nash equilibrium payoffs need not be unique...
متن کاملA TRANSITION FROM TWO-PERSON ZERO-SUM GAMES TO COOPERATIVE GAMES WITH FUZZY PAYOFFS
In this paper, we deal with games with fuzzy payoffs. We proved that players who are playing a zero-sum game with fuzzy payoffs against Nature are able to increase their joint payoff, and hence their individual payoffs by cooperating. It is shown that, a cooperative game with the fuzzy characteristic function can be constructed via the optimal game values of the zero-sum games with fuzzy payoff...
متن کاملOn minmax theorems for multiplayer games Citation
We prove a generalization of von Neumann’s minmax theorem to the class of separable multiplayer zerosum games, introduced in [Bregman and Fokin 1998]. These games are polymatrix—that is, graphical games in which every edge is a two-player game between its endpoints—in which every outcome has zero total sum of players’ payoffs. Our generalization of the minmax theorem implies convexity of equili...
متن کاملA generalization of zero-divisor graphs
In this paper, we introduce a family of graphs which is a generalization of zero-divisor graphs and compute an upper-bound for the diameter of such graphs. We also investigate their cycles and cores
متن کاملThe Geometry of Nash Equilibria and Correlated Equilibria and a Generalization of Zero-Sum Games
A pure strategy is coherent if it is played with positive probability in at least one correlated equilibrium. A game is pre-tight if in every correlated equilibrium, all incentives constraints for non deviating to a coherent strategy are tight. We show that there exists a Nash equilibrium in the relative interior of the correlated equilibrium polytope if and only if the game is pre-tight. Furth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Operations Research
سال: 2016
ISSN: 0364-765X,1526-5471
DOI: 10.1287/moor.2015.0745